Age-Dependent Impairment of Eyeblink Conditioning in Prion Protein-Deficient Mice
نویسندگان
چکیده
Mice lacking the prion protein (PrP(C)) gene (Prnp), Ngsk Prnp (0/0) mice, show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrP(C)-like protein (PrPLP/Dpl). Because PrP(C) is highly expressed in cerebellar neurons (including PCs and granule cells), it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrP(C) and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp (0/0) mice in adulthood (16, 40, and 60 weeks of age). The aims of the present study were two-fold: (1) to examine the role of PrP(C) and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2) to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp (0/0) mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp (0/0) mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs), although the CR timing was altered. The same result was observed in another line of PrP(c)-deficient mice, ZrchI PrnP (0/0) mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp (0/0) mice. Furthermore, Ngsk Prnp (0/0) mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp (0/0) mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning.
منابع مشابه
Deficient Cerebellar Long-Term Depression, Impaired Eyeblink Conditioning, and Normal Motor Coordination in GFAP Mutant Mice
Mice devoid of glial fibrillary acidic protein (GFAP), an intermediate filament protein specifically expressed in astrocytes, develop normally and do not show any detectable abnormalities in the anatomy of the brain. In the cerebellum, excitatory synaptic transmission from parallel fibers (PFs) or climbing fibers (CFs) to Purkinje cells is unaltered, and these synapses display normal short-term...
متن کاملImpaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice.
Converging lines of evidence from rabbits, rats, and humans argue for the crucial involvement of the cerebellum in classical conditioning of the eyeblink/nictitating membrane response in mammals. For example, selective lesions (permanent or reversible) of the cerebellum block both acquisition and retention of eyeblink conditioning. Correspondingly, electrophysiological and brain-imaging studies...
متن کاملTask-specific enhancement of hippocampus-dependent learning in mice deficient in monoacylglycerol lipase, the major hydrolyzing enzyme of the endocannabinoid 2-arachidonoylglycerol
Growing evidence indicates that the endocannabinoid system is important for the acquisition and/or extinction of learning and memory. However, it is unclear which endocannabinoid(s) play(s) a crucial role in these cognitive functions, especially memory extinction. To elucidate the physiological role of 2-arachidonoylglycerol (2-AG), a major endocannabinoid, in behavioral and cognitive functions...
متن کاملDifferential effects and rates of normal aging in cerebellum and hippocampus.
Cognitive functions show many alternative outcomes and great individual variation during normal aging. We examined learning over the adult life span in CBA mice, along with morphological and electrophysiological substrates. Our aim was to compare cerebellum-dependent delay eyeblink classical conditioning and hippocampus-dependent contextual fear conditioning in the same animals using the same c...
متن کاملThe hippocampus plays an important role in eyeblink conditioning with a short trace interval in glutamate receptor subunit delta 2 mutant mice.
Mutant mice lacking the glutamate receptor subunit delta2 exhibit changes in the structure and function of the cerebellar cortex. The most prominent functional feature is a deficiency in the long-term depression (LTD) at parallel fiber-Purkinje cell synapses. These mutant mice exhibit severe impairment during delay eyeblink conditioning but learn normally during trace eyeblink conditioning with...
متن کامل